
Game Servers Deployment Automation Case Study

Zane Ouimet, Heath Caswell* and Youry Khmelevsky∗
Computer Science, Okanagan College, Kelowna, BC Canada

Emails: zane.ouimet@outlook.com, heath.caswell@gmail.com and

ykhmelevsky@okanagan.bc.ca

∗Also Affiliated with Mathematics, Statistics, Physics, and Computer Science Department

Irving K. Barber School of Arts and Sciences, UBC, BC Canada

Rob Bartlett and Alex Needham
WTFast, Kelowna, BC Canada

Emails: {rob, alex}@wtfast.com

Abstract—This paper describes a software system prototype
for automated game servers deployment and configuring cus-
tomized game servers on demand. The described system has a web
interface which allows customers to create accounts, purchase,
services, and gain access to and configure their purchased web
servers. This service consists of a website which acts as an
interface for customers to purchase subscriptions, and gain access
to and configure their purchased servers. Behind the website is
a system which dynamically deploys virtual machines with the
requested configurations, handles all of the networking details,
and provides information back to the customer on how to connect
to their server.

The proposed prototype was tested by deploying popular
Minecraft game server. This facilitated network research by
allowing users to have a more scalable testing environment and
thus enable controlled laboratory experiments. This paper goes
through the entire life-cycle of the project, starting with some
information on existing research about the subject, and how it
relates to ours. Following that we describe our project require-
ments, the solution we ended up using and how it was modified to
fit our requirements. We then have a section showing performance
experiments we ran. The final section is the conclusion which talks
about the outcome of our project in relation to our original goals,
and how it will impact future research in this area.

I. INTRODUCTION

Minecraft [28], [1] is a popular video game played world-
wide, and is built simply enough to be used for network
analysis and research. This paper describes a software system
prototype for automated game servers deployment and con-
figuring customized game servers on demand. The described
system has a web interface which allows customers to create
accounts, purchase, services, and gain access to and configure
their purchased web servers. This service consists of a website
which acts as an interface for customers to purchase subscrip-
tions, and gain access to and configure their purchased servers.
Behind the website is a system which dynamically deploys
virtual machines with the requested configurations, handles all
of the networking details, and provides information back to
the customer on how to connect to their server.

The project prototype development was the next step in
the design, construction and test of a new layer of game
server software that can optimize and monitor in real-time
game services [3], [4]. It stems from the observation that game
servers place demands on computing resources - hardware
and network - that can vary with user behaviour and whose
optimization is the key to customer satisfaction. Virtualized

servers provide new flexibility in hardware reservation and al-
location but their use can make resource optimization difficult
by making it context sensitive i.e. dependent on the allocation
of virtual machines (VMs) to hardware.

The main project’s objective was to study predictive mon-
itoring and optimization for game server clusters. The first
phase of the project was to gather performance data about
game servers, then analyze its time behaviour to allow the
creation of a performance-prediction software module [5].
The initial module version applied virtualized game servers
in various configurations, and later versions were tested with
physical servers as well as parallel (cluster) game servers.
Later, the project investigated performance optimization based
on short-term predictions.

Our main contributions are: (1) a unique network and
gaming servers infrastructure created for the emulation ex-
periments, which is also being used to perform stress testing
and data analysis of network game applications, as well as to
monitor the performance of game servers within a proprietary
Gamers Private Network (GPN) [13]; (2) an automated soft-
ware system prototype for creating and configuring customized
game servers on demand, and (3) using this automated software
system prototype we are able to improve the game servers’
utilization. Two networking and servers optimization research
projects GPN-Perf1: ”Investigating performance of gamers
Cbntovga-597(gamers)]TJ 048(aCbnto)o

spikes in packet traffic [13]. Our goal was to generate realistic
network traffic related to video game environment on the
Internet by ready made game emulation applications, available
online.

”A video game network is a distributed set of apparatus
which are capable of exhibiting an interactive single identity
game” [26]. Response time and network latencies are very
important video game parameters, which can be a reason
for the gamers’ frustrations and dissatisfaction, especially in
the multi-user environment. On the other hand, ”the online
service’s computers themselves introduce latencies, typically
increasing as the number of active users increases” [24].

In [12] and in [14] multiuser online video game architec-
tures been discussed in order to reduce the bandwidth and the
servers processing time. Their approach may improve scaling,
but it ”opens the game to additional cheating, since players
are responsible for distributing events and storing state”. A

Fig. 1. Domain Model of the Developed Prototype

Fig. 2. System Architecture

Fig. 3. Web Subsystem Architecture

as well as the API polling the Cloudstack API to ascertain the
status of asynchronous tasks.

IV. DEVELOPMENT

The entirety of the project consisted of two main areas the
”web” and ”infrastructure” parts. The prototype development
part of the project was broken into two parts: a RESTful
API (written in PHP) and a JavaScript UI. The diverse range
of technologies being used can create issue while integrating

Fig. 4. WebUI

Fig. 5. WebAPI

systems and may require additional effort to either maintain
or replace parts with a singular language or technology such
as replacing PHP with NodeJS. At this time the PHP API is
interacting directly with Cloudstack to create and control VMs
while utilizing Puppet to install and configure software. The
prototype makes use of PHP’s ability to access and write to
the file structure allowing for the automated creation of the
Puppet Node files, or more simply put, machine configuration

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:28:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Synchronous Request.

Fig. 7. Asynchronous Request.

files. Both the UI and API are incomplete; however given a
functioning Cloudstack [8] install the system is able to: create,
destroy, start, stop, reboot, and configure a game server on the
VM through puppet files. The current issue that is blocking

Fig. 9. Admin Dashboard Showing Error Graph.

• Viewing error logs [admin]

• Changing user role [admin]

• Updating profile

• Deleting server [admin]

Our initial attempt to deploy a gaming server was with
Minecraft. Using foreman and puppet we have automated
deployment and configuration conceding a purchase from a
user via an external purchasing web system. The server page
is shown at Fig. 10 and process of virtual machines deployment
is shown at Fig. 11.

The interface was built on a two tier system that separated
administrators and users. It was meant to be extensible in the
event that further user roles where required. A user was granted
control over their servers and virtual machines but no other
whereas an admin was capable of modifying and accessing
any users accounts or their servers. Additional account levels
will be added as needed to accommodate new staff or users.

V. FUTURE WORK

Our future research will be related to utilizing the in-
frastructure created in the first phase of the project as the
framework on which to test and build game server software that
can optimize and monitor WTFast game services in real time.
An effort will also be made to create and utilize predictive
models for handling anticipated demand for a particular server.
This infrastructure will allow new servers to be automatically
deployed and configured for use as private game servers,
while also monitoring their performance and usage statistics,
including the following additional features:

• Authentication with WTFast

• Integration with the GPN

• Load balancing for both the API and UI

• Advanced resource allocation

• Failsafes and issue handling

• Payment and store

• Improved UI design

• Better user profiles

By using predictive models, new servers may be auto-
matically added when traffic levels require more resources to
maintain optimal performance. These models will likely be
altered on a case by case basis and require operator interaction
to deal with high variance events such as a new game launch
or an unpredictable flood to a particular game.

Testing of the network infrastructure and the network
software will be done using a program that emulates many
players connecting to multiple game servers on several virtual
machines in the network. The goal of these network tests is
to identify the point at which the network software can no
longer keep up to the flow of traffic, i.e. the point where the
network software becomes a cause of latency. The tests will
also serve to identify the capacity of the game servers and
their host virtual machines. Initially the tests will be performed
under ideal conditions, that is, on a local network with almost
no wire latency. Later, network factors such as latency and
jitter can be artificially added to the network to emulate real
conditions of the game being played over the Internet on a
geographically remote server in order to confirm our tests in
a more realistic environment.

In this paper we discussed latency for gaming, which is
vital and it is discussed qualitatively both singularly and via
networks. In our future research we will try to capture the
latency issues quantitatively. Then we will try to do relevant
comparisons under ideal versus the point where it ’gracefully
degrades’ or the point where we can provide a consistent
performance across the spectrum of users. On the other hand,
will try to go more in depth qualitatively as to those measures

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on March 03,2024 at 05:28:30 UTC from IEEE Xplore. Restrictions apply.

video games led us to experimentation with Minecraft clients
and servers due to its simplicity and the nature of Java. The
need for a controlled environment to ensure consistent and
accurate results led to the requirement of multiple automated
bots [3], [4], that could interact with the servers in a predictable
way and for the automated game servers deployment system
prototype and configuring customized game servers on de-
mand. This project was successful in creating just that, meeting
all originally set criteria. We anticipate that the automated
deployment system prototype will greatly help out future work
in this field. Based on our experiments, our infrastructure gives
to us a suitable tool for the network performance investigation
and to generate a stress test for the game servers.

ACKNOWLEDGMENTS

The described WTFast Gateway was developed by Com-
puter Science students at Okanagan College within COSC 470
Software Engineering and COSC 471 Software Engineering
Project courses in the Fall 2014 and in the Winter 2015
(Bachelor of Information Systems program, Computer Science
department). Our thanks to the students Marc Schroth, Mike
Adkins, J. Riley Dunkin, Simon Detlor and Brad French for
their work on the WTFast Gateway.

We would like to thank NSERC’s CCI Engage College
program for supporting our ”GPN-Perf1: Investigating perfor-
mance of gamers private networks” in 2014 and GPN-Perf2
research project application in 2015. Our thank to Amazon
Web Services, Inc. for supporting our capstone student soft-
ware engineering and our student research projects by AWS
(Amazon Web Services) Grants for Research and Education.

We would like to thank both reviewers for their insightful
comments on the paper, as these comments led us to an
improvement of the work. We thank the reviewers because
these points were useful to clarify the main focus of the paper.

REFERENCES

[1] Mojang Synergies AB./Microsoft. Minecraft home page:
https://minecraft.net/., June 2014.

[2] Simonas Gildutis Dimitris Bozelos. Alice Chen, Salim Alami. Satellizer
- token-based angularjs authentication: https://satellizer.herokuapp.com.

[3] T. Alstad, J.R. Duncan, S. Detlor, B. French, H. Caswell, Z. Ouimet,
Y. Khmelevsky, G. Hains, R. Bartlett, and A. Needham. Minecraft
computer game performance analysis and network traffic emulation by
a custom bot. In Science and Information Conference (SAI), 2015, pages
227–236, July 2015.

[4] T. Alstad, J. Riley Dunkin, S. Detlor, B. French, H. Caswell, Z. Ouimet,
Y. Khmelevsky, and G. Hains. Game network traffic simulation by a
custom bot. In Systems Conference (SysCon), 2015 9th Annual IEEE
International, pages 675–680, April 2015.

[5] Trevor Alstad, J. Riley Dunkin, Rob Bartlett, Alex Needham, Gaétan
Hains, and Youry Khmelevsky. Minecraft computer game simulation
and network performance analysis. In Second International Conferences
on Computer Graphics, Visualization, Computer Vision, and Game
Technology (VisioGame 2014), Bandung, Indonesia, November 2014.
Accepted for publication.

[6] Mark Claypool and Kajal Claypool. Latency and player actions in
online games. Commun. ACM, 49(11):40–45, November 2006.

[7] Mark Claypool, David Finkel, Alexander Grant, and Michael Solano.
Thin to win?: Network performance analysis of the onlive thin client
game system. In Proceedings of the 11th Annual Workshop on
Network and Systems Support for Games, NetGames ’12, pages 1:1–1:6,
Piscataway, NJ, USA, 2012. IEEE Press.

[8] Apache CloudStackTM. Open source cloud computingTM:
https://cloudstack.apache.org.

[9] Johannes Färber. Traffic modelling for fast action network games.
Multimedia Tools and Applications, 23(1):31–46, 2004.

[10] Google. Angularjs - html enhanced for web apps: https://angularjs.org.

[11] Aymen Hafsaoui, Navid Nikaein, and Christian Bonnet. Analysis and
experimentation with a realistic traffic generation tool for emerging
application scenarios. In Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques, SimuTools ’13, pages
268–273, ICST, Brussels, Belgium, Belgium, 2013. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

[12] Takuji Iimura, Hiroaki Hazeyama, and Youki Kadobayashi. Zoned
federation of game servers: A peer-to-peer approach to scalable multi-

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /WingdingstptraBov1c

